Newton's Laws

First: Momentum stays the same as long as $\overrightarrow{F_{\text {net }}}=0$.
Second: $\overrightarrow{F_{\text {net }}}=m \vec{a}$.
Third: Every force occurs as one member of an action/reaction pair of forces.

Conservation

Momentum, energy, angular momentum, charge are conserved for an isolated system. Mass is conserved in normal situations.

Linear Motion

$d=v_{i} t+\frac{1}{2} a t^{2} \quad v_{f}=v_{i}+a t \quad v_{f}^{2}=v_{i}^{2}+2 a d \quad v_{f}^{2}=v_{i}^{2}+2 a d$ $K=\frac{1}{2} m v^{2}$
$\Delta K=J_{x}=\int_{t_{i}}^{t_{f}} F_{x}(t) d t$
$\Delta p_{s}=W=\int_{s_{i}}^{s_{f}} F_{s} d s$

Springs

Hooke's law: $\left(F_{s p}\right)_{s}=-k \Delta s$

$$
U_{s}=\frac{1}{2} k(\Delta s)^{2}
$$

Rotational Motion

$\omega_{f}=\omega_{i}+\alpha \Delta t \quad \theta_{f}=\theta_{i}+\omega_{i} \Delta t+\frac{1}{2} \alpha(\Delta t)^{2} \quad \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta$
$a_{\text {tangential }}=\alpha r \quad a_{\text {centripital }}=v^{2} / r=\omega^{2} r \quad x_{\mathrm{cm}}=\frac{1}{M} \int x d m$
$I=\sum_{i} m_{i} r_{i}^{2} \quad I=\int r^{2} d m$
$K_{\mathrm{rot}}=\frac{1}{2} I \omega^{2} \quad E_{\mathrm{mech}}=K_{\mathrm{rot}}+U_{g}=\frac{1}{2} I \omega^{2}+M g y_{\mathrm{cm}}$
parallel axis theorem: $I=I_{\mathrm{cm}}+M d^{2} \quad \tau \equiv r F \sin \phi \quad \alpha=\frac{\tau_{\text {net }}}{I}$
$v_{\mathrm{cm}}=R \omega \quad K_{\text {rolling }}=K_{\text {rot }}+K_{\mathrm{cm}} \quad \vec{\tau}=\vec{r} \times \vec{F} \quad \vec{L}=\vec{r} \times \vec{p}$
$d \vec{L} / d t=\vec{\tau}_{n e t}$
$\vec{L}=I \vec{\omega}$

Planets

$F_{1 \mathrm{on} 2}=F_{2 \mathrm{on} 1}=\frac{G m_{1} m_{2}}{r^{2}}$
Escape Velocity: $v=\sqrt{\frac{2 G M}{r}}$
$U_{g}=\frac{G m_{1} m_{2}}{r}$
Satellite Speed: $v=\sqrt{\frac{G M}{r}}$
On Surface: $g=\frac{G M}{R_{L}}$

Kepler's 2nd: $\frac{\Delta A}{\Delta t}=\frac{L}{2 m}$

Simple Harmonic/Circular Motion

Uniform circular motion projected onto one dimension is simple harmonic motion.
Any system with a linear restoring force will undergo simple harmonic motion around the equilibrium position.
$x(t)=A \cos \left(\omega t+\phi_{0}\right)$

$$
v_{x}(t)=-\omega A \sin \left(\omega t+\phi_{0}\right)
$$

pendulum: $\omega=2 \pi f=\sqrt{\frac{g}{L}}$

$$
\text { damped oscillator: } x(t)=A e^{-b t / 2 m} \cos \left(\omega t+\phi_{0}\right)
$$

time constant: $\tau=m / b$
damped system: $E=E_{0} e^{-t / \tau}$

Fluids and Elasticity

Archimedes' principle: The magnitude of the buoyant force equals the weight of the fluid displaced by the object.
Ideal-fluid model: Incompressible. Smooth, laminar flow. Nonviscuous.
Bernoulli's is a statement of energy conservation.
$p=F / A$

$$
p_{g}=p-1
$$

$$
\rho=m / V
$$

$$
v_{1} A_{1}=v_{2} A_{2}
$$

$$
\text { Bernoulli's: } p_{1}+\frac{1}{2} \rho g y_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}
$$

$$
(F / A)=Y(\Delta L / L)
$$

$$
p=-B(\Delta V / V)
$$

Matter

Phases: solid, liquid gas. Ideal-gas model. Isochoric process $\rightarrow V$ constant and $W=0$, Isobaric $\rightarrow p=$ constant, Isothermal $\rightarrow T$ constant and $\Delta E_{t h}=0$, Adiabatic $\rightarrow Q=0$. conduction, convection, radiation, evaporation.
Second law: entropy cannot decrease.
Ideal Gas Law: $p V=n R T$
First Law of Thermo: $\Delta E_{t h}=W+Q \quad W=-\int_{V_{\mathrm{i}}}^{V_{\mathrm{f}}} p d V$
specific heat: $Q=M c \Delta T \quad \epsilon_{\mathrm{avg}}=\frac{3}{2} k_{\mathrm{B}} T \quad p=\frac{2}{3} \frac{N}{V} \epsilon_{\mathrm{avg}}$

Waves

Transverse, Longitudinal. Snapshot graph, history graph. Superposition, nodes, and antinodes.
$v=\lambda f \omega=v k \quad D(x, t)=A \sin \left(k x-\omega t+\phi_{0}\right) \quad I=P / a \quad I \propto A^{2}$ Doppler: $f_{ \pm}=\frac{f_{0}}{1 \mp v_{s} / v}$

Doppler: $f_{ \pm}=1 \pm \frac{v_{o}}{v} f_{0}$
Double slit. angles of bright fringes: $\theta_{m}=m \frac{\lambda}{d}$ where $\mathrm{m}=$ $0,1,2, \ldots, d$ is slit spacing. $\quad I_{\text {double }}=4 I_{1} \cos ^{2} \frac{\pi d}{\lambda L} y$.
Diffraction grating: angles of bright fringes: $d \sin \theta_{m}=m A, m=$ $0,1,2, \ldots$.
Single slit: angles of dark fringes $\theta_{p}=p \frac{\lambda}{a}, p=1,2,3, \ldots$
Circular aperture: $w=2 y_{1}=2 L \tan \theta_{1} \approx \frac{2.44 \lambda L}{D}$

Electricity and Magnetism

Coulomb's $F_{1 \text { on } 2}=F_{2 \text { on } 1}=\frac{K\left|q_{1}\right|\left|q_{2}\right|}{r^{2}}$
$\vec{E}(x, y, z)=\frac{\vec{F}_{\text {on q }} \text { at }(x, y, z)}{q}$
$\vec{E}_{\text {dipole }}=\frac{1}{4 \pi \epsilon_{0}} \frac{2 \vec{p}}{r^{3}}$ (on axis) gauss's law $\phi_{e}=\oint \vec{E} \cdot d \vec{A}=\frac{Q_{\text {in }}}{\epsilon_{0}}$ unif. elec. field: $U_{\text {elec }}=U_{0}+q E s$ point charges: $U_{\text {elec }}=\frac{K q_{1} q_{2}}{r}$ dipole: $U_{\text {dipole }}=-\vec{p} \cdot \vec{E}$

New

de broglie: $\lambda=\frac{h}{p}=\frac{h}{m v}$

$$
E_{n}=n^{2} \frac{h^{2}}{8 m L^{2}}, \quad n=1,2,3, \ldots
$$

snells: $n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right)$

Base SI Units length: m, mass: kg, time: s, current: A(ampere), temp: K, amount: mol, luminous intensity: cd(candela)

$\vec{p} \quad$ dipole moment
$Q \quad$ heat
q elect. charge 1 coulumb $=1 \mathrm{C}=1 \mathrm{As}-(q$ or $Q)$
R elect. resistance
gas constant
r radius
S entropy
S entropy
s arc length m
position m
T period s
abs. temperature 1 kelvin $=1 \mathrm{~K}=T_{C}+273$
t time s
U potential energy 1 joule $=1 \mathrm{~J}$
u atomic mass unit $1 \mathrm{u}=1.66 * 10^{-27} \mathrm{~kg}$
V voltage $\quad 1$ volt $=1 \mathrm{~V}=1 \mathrm{~J} / \mathrm{C}$
volume m^{3}
\vec{v} velocity $\quad \mathrm{m} / \mathrm{s}$
W work $\quad 1 \mathrm{Nm}=1 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~J}$
w width m
x displacement m
Z elec. impedance $1 \mathrm{ohm}=1 \Omega$
α ang. accel $\mathrm{rad} / \mathrm{s}^{2}$
Δ change in var. used to signify change i.e. Δx
$\epsilon \quad$ permittivity $\quad \mathrm{F} / \mathrm{m}=\epsilon_{r} \epsilon_{0}$
$\epsilon_{0} \quad$ vac. permittivity $8.854 * 10^{-12} \mathrm{~F} / \mathrm{m}$
θ angle $\quad \mathrm{rad}$
λ wavelength m
μ mag. moment A m^{2}
μ coeff. friction unitless
μ permeability $\quad \mathrm{H} / \mathrm{m}=\mathrm{N} / \mathrm{A}^{2}-\mu=\mu_{0} \mu_{r}$
$\mu_{0} \quad$ perm const. $\quad r \pi * 10^{-} 7 \mathrm{~T} \mathrm{~m} / \mathrm{A}$
$\pi \quad \pi \quad 3.14159 \ldots$
ρ mass density $\quad \mathrm{kg} / \mathrm{m}^{3}-\rho=m / V$
resistivity $\quad \Omega \mathrm{m}-\rho=1 / \sigma$
σ conductivity $\quad 1 / \Omega \mathrm{m}$
τ torque $\quad \mathrm{N} \mathrm{m}-\tau=\vec{r} \times \vec{F}$
time constant different for circuits, oscillations, etc...
2π
Φ field strength units vary dep. on context
Φ_{e} electric flux
Φ_{m} magnetic flux
ϕ phase
ψ wave function
Ω elec. resistance
ω ang. velocity
$\int_{\text {surface }} \vec{E} \cdot d \vec{A}$
1 weber $=1 \mathrm{~Wb}=1 \mathrm{~T} m^{2}$
radians - operand to sinusoidal fn.
unitless, represents q.m. state
$1 \mathrm{ohm}=1 \Omega=1 \mathrm{~V} / \mathrm{A}$
$\mathrm{rad} / \mathrm{s}$
$F \rightarrow N=\frac{k g m}{s^{2}}$

Miscellaneous

$\vec{A} \times \vec{B} \equiv A B \sin \alpha$, in the direction given by right-hand rule

