Newton's Laws

First: Momentum stays the same as long as $\vec{F}_{net} = 0$. Second: $\vec{F}_{net} = m\vec{a}$.

Third: Every force occurs as one member of an action/reaction pair of forces.

Conservation

Momentum, energy, angular momentum, charge are conserved for an isolated system. Mass is conserved in normal situations.

Linear Motion

 $d = v_i t + \frac{1}{2}at^2 \quad v_f = v_i + at \quad v_f^2 = v_i^2 + 2ad \quad v_f^2 = v_i^2 + 2ad$ $K = \frac{1}{2}mv^2 \qquad \qquad \vec{p} = m\vec{v}$ $\Delta K = J_x = \int_{t_i}^{t_f} F_x(t) dt \qquad \qquad \Delta p_s = W = \int_{s_i}^{s_f} F_s ds$

Springs

Hooke's law:
$$(F_{sp})_s = -k\Delta s$$
 $U_s = \frac{1}{2}k(\Delta s)^2$

Rotational Motion

$$\begin{split} \omega_f &= \omega_i + \alpha \Delta t \quad \theta_f = \theta_i + \omega_i \Delta t + \frac{1}{2} \alpha (\Delta t)^2 \quad \omega_f^2 = \omega_i^2 + 2\alpha \Delta \theta \\ a_{\text{tangential}} &= \alpha r \quad a_{\text{centripital}} = v^2/r = \omega^2 r \quad x_{\text{cm}} = \frac{1}{M} \int x \ dm \\ I &= \sum_i m_i r_i^2 \qquad \qquad I = \int r^2 dm \\ K_{\text{rot}} &= \frac{1}{2} I \omega^2 \qquad E_{\text{mech}} = K_{\text{rot}} + U_g = \frac{1}{2} I \omega^2 + Mg y_{\text{cm}} \\ \text{parallel axis theorem: } I &= I_{\text{cm}} + M d^2 \quad \tau \equiv rF \sin \phi \quad \alpha = \frac{\tau_{\text{net}}}{I} \end{split}$$

 $v_{\rm cm} = R\omega \qquad K_{\rm rolling} = K_{\rm rot} + K_{\rm cm} \qquad \vec{\tau} = \vec{r} \times \vec{F} \qquad \vec{L} = \vec{r} \times \vec{p}$ $d\vec{L}/dt = \vec{\tau}_{net} \qquad \qquad \vec{L} = I\vec{\omega}$

Planets

 $F_{1\text{on2}} = F_{2\text{on1}} = \frac{Gm_1m_2}{r^2}$ Satellite Speed: $v = \sqrt{\frac{GM}{r}}$ Escape Velocity: $v = \sqrt{\frac{2GM}{r}}$ On Surface: $g = \frac{GM}{R_L}$ $U_g = \frac{Gm_1m_2}{r}$ Kepler's 3rd: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$ Kepler's 2nd: $\frac{\Delta A}{\Delta t} = \frac{L}{2m}$

Simple Harmonic/Circular Motion

Uniform circular motion projected onto one dimension is simple harmonic motion.

Any system with a linear restoring force will undergo simple harmonic motion around the equilibrium position.

$$x(t) = A\cos(\omega t + \phi_0) \qquad \qquad v_x(t) = -\omega A\sin(\omega t + \phi_0)$$

pendulum: $\omega = 2\pi f = \sqrt{\frac{g}{L}}$

damped oscillator: $x(t) = Ae^{-bt/2m}\cos(\omega t + \phi_0)$

time constant: $\tau = m/b$ damped system: $E = E_0 e^{-t/\tau}$

Fluids and Elasticity

Archimedes' principle: The magnitude of the buoyant force equals the weight of the fluid displaced by the object.

Ideal-fluid model: Incompressible. Smooth, laminar flow. Non-viscuous.

Bernoulli's is a statement of energy conservation.

$$p = F/A$$
 $p_g = p - 1$ $\rho = m/V$

$$v_1 A_1 = v_2 A_2$$
 Bernoulli's: $p_1 + \frac{1}{2}\rho g y_1 = p_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$

$$(F/A) = Y(\Delta L/L)$$
 $p = -B(\Delta V/V)$

Matter

Phases: solid, liquid gas. Ideal-gas model. Isochoric process $\rightarrow V$ constant and W=0, Isobaric $\rightarrow p=$ constant, Isothermal $\rightarrow T$ constant and $\Delta E_{th} = 0$, Adiabatic $\rightarrow Q=0$. conduction, convection, radiation, evaporation.

Second law: entropy cannot decrease.

Ideal Gas Law: pV = nRT

First Law of Thermo:
$$\Delta E_{th} = W + Q$$
 $W = -\int_{V_i}^{V_f} p \, dV$
specific heat: $Q = Mc\Delta T$ $\epsilon_{avg} = \frac{3}{2}k_BT$ $p = \frac{2}{3}\frac{N}{V}\epsilon_{avg}$

Waves

Transverse, Longitudinal. Snapshot graph, history graph. Superposition, nodes, and antinodes.

$$v = \lambda f \ \omega = vk \ D(x,t) = A\sin(kx - \omega t + \phi_0) \ I = P/a \ I \propto A^2$$

Doppler:
$$f_{\pm} = \frac{f_0}{1 \mp v_s/v}$$
 Doppler: $f_{\pm} = 1 \pm \frac{v_o}{v} f_0$

Double slit. angles of bright fringes: $\theta_m = m \frac{\lambda}{d}$ where m = 0, 1, 2, ..., d is slit spacing. $I_{double} = 4I_1 \cos^2 \frac{\pi d}{\lambda L} y$. Diffraction grating: angles of bright fringes: $d \sin \theta_m = mA$, m =

Diffraction grating: angles of origin times. $a \sin v_m = mA, m = 0, 1, 2, \dots$

Single slit: angles of dark fringes $\theta_p = p \frac{\lambda}{a}, p = 1, 2, 3, ...$ Circular aperture: $w = 2y_1 = 2L \tan \theta_1 \approx \frac{2.44\lambda L}{D}$

Electricity and Magnetism

Coulomb's
$$F_1$$
 on $2 = F_2$ on $1 = \frac{K|q1|(q2)}{r^2}$
 $\vec{E}(x, y, z) = \frac{\vec{F}_{\text{on q}} \text{ at } (x, y, z)}{q}$ point charge: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{r}$
 $\vec{E}_{\text{dipole}} = \frac{1}{4\pi\epsilon_0} \frac{2\vec{p}}{r^3}$ (on axis) gauss's law $\phi_e = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{in}}}{\epsilon_0}$
unif. elec. field: $U_{\text{elec}} = U_0 + qEs$ point charges: $U_{\text{elec}} = \frac{Kq_1q_2}{r}$
dipole: $U_{\text{dipole}} = -\vec{p} \cdot \vec{E}$

New

de broglie:
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
 $E_n = n^2 \frac{h^2}{8mL^2}, \quad n = 1, 2, 3, \dots$
snells: $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$

Base SI Units length: m, mass: kg, time: s, current: A(ampere), temp: K, amount: mol, luminous intensity: cd(candela) Symbols

	Name	Units
A	area	m^2
	amplitude	
a	acceleration	m/s^2
	area	
\vec{B}	magnetic field 1	1 tesla = 1 T \equiv 1 N/A m (flux density)
b	damping constant	kg/s
C	capacitance	$1 \text{ farad} = 1 \text{ F} \equiv 1 \text{ C/V}$
c	speed of light	299,792,458 m/s
	specific heat	J / kg K
d	distance	m
\vec{E}	electric field	1 N/C = 1 V/m
\overline{E}	energy	1 ioule = 1 J = 1 kg m ² /s ²
e	various	2.71828, electron, elem. charge.
	electron	
	elem. charge	1.60×10^{-19}
	various	2.71828, electron, elem. charge.
F	force	$1 \text{ N} = 1 \text{ kg m/s}^2$
f	frequency	frequency $(1 \text{ Hz} = 1/\text{s})$
v	various	function, friction (N)
G	gravity constant	$6.674 * 10^{-11} \text{ N m}^2/\text{kg}^2$
g	accel. d.t. gravity	m/s^2
\vec{H}	magnetic field 2	A/m (field strength)
h	height	m
h	planck's constant	$6.626 * 10^{-34} \text{ J s}$
\hbar	reduced planck's	$h/2\pi$
Ι	intensity	W/m^2
	electric current	1 ampere = 1 A = 1 C/s
	mmnt. of inertia	$kg m^2$ – "rotational mass"
i	imaginary unit	$\sqrt{-1}$
î	x-axis unit vec	also $\hat{\mathbf{j}}, \hat{\mathbf{k}}$ for y and z axes
J	impulse	kg m/s – equiv to ΔP
K	kinetic energy	J
	electrostatic c.	$8.99 \times 10^9 \text{ N m}^2/\text{C}^2$
$k_{\rm B}$	boltzmann const.	$1.381 * 10^{-23} \text{ J/K} = R/N_A$
	wave number	rad/m – "spacial freq. of wave"
	spring constant	J/m^2
L	inductance	1 henry = 1 H \equiv 1 Wb/A = 1 T m ² /A
	ang. momentum	$kg m^2/s$
l	length	m
m	mass	kg
N	various	normal vector, atomic number
$N_{\rm A}$	avogadro's num	$6.02 * 10^{23} \text{ 1/mol}$
n	ind. of refraction	unitless $-n = c/v$
	quantum number	$n = 1, 2, 3, \ldots$, parameterizes quantum
		energy state for particle
\vec{p}	momentum	kg m/s – $\vec{p} \equiv m\vec{v}$
p	pressure	$1 \text{ pascal} = 1 \text{ Pa} \equiv 1 \text{ N/m}^2$

\vec{p}	dipole moment	qs, from the negative to the positive		
		charge		
Q	heat	1 joule = 1 J = 0.2389 cal		
q	elect. charge	1 coulumb = 1 C = 1 A s - (q or Q)		
R	elect. resistance	$1 \text{ ohm} = 1 \Omega = 1 \text{ V/A}$		
	gas constant	8.314 J/mol K		
r	radius	m		
$S \\ C$	entropy			
S	entropy			
s	arc length	m		
æ	position	m		
1	period			
,	abs. temperature	$1 \text{ kelvin} = 1 \text{ K} = T_C + 273$		
t T	time	S 1 1 1 1 1		
U	potential energy	1 joure = 1 J 1 $m = 1.66 \pm 10^{-27}$ km		
u V	atomic mass unit	$1 \text{ u} = 1.00 * 10^{-1} \text{ kg}$		
V	voltage	1 volt = 1 v = 1 J/C		
.	volume			
U W	work	$\frac{11}{5}$		
vv av	width	1 M III = 1 Kg III / S = 1.5		
$\frac{w}{r}$	displacement	m		
$\frac{x}{Z}$	elec impedance	$1 \text{ ohm} = 1 \Omega$		
2 0	ang accel	rad/s^2		
Δ	change in var.	used to signify change i.e. Δx		
 ε	permittivity	$F/m = \epsilon_r \epsilon_0$		
€∩	vac. permittivity	$8.854 * 10^{-12}$ F/m		
θ	angle	rad		
λ	wavelength	m		
μ	mag. moment	A m^2		
μ	coeff. friction	unitless		
μ	permeability	$\mathrm{H/m}=\mathrm{N/A^2}-\mu=\mu_0\mu_r$		
μ_0	perm const.	$r\pi * 10^-7 \mathrm{T} \mathrm{m/A}$		
π	π	3.14159		
ρ	mass density	$\rm kg/m^3 - \rho = m/V$		
	resistivity	$\Omega \ \mathrm{m} - \rho = 1/\sigma$		
σ	conductivity	$1/\Omega$ m		
au	torque	N m — $\tau = \vec{r} \times \vec{F}$		
	time constant	different for circuits, oscillations, etc		
	2π	6.28319		
Φ	field strength	units vary dep. on context		
Φ_e	electric flux	$\int_{\text{surface}} \vec{E} \cdot d\vec{A}$		
Φ_m	magnetic flux	1 weber = 1 Wb = 1 T m^2		
ϕ	phase	radians — operand to sinusoidal fn.		
ψ	wave function	unitless, represents q.m. state		
Ω	elec. resistance	$1 \text{ ohm} = 1 \ \Omega = 1 \text{ V/A}$		
ω	ang. velocity	rad/s		
F	kg m			
$F \to N = \frac{s}{s^2}$				

Miscellaneous

 $\vec{A}\times\vec{B}\equiv AB\sin\alpha,$ in the direction given by right-hand rule