cdf $F_{X}(x)=P_{X}((-\infty, x])=P(c \in C: X(x) \leq x)$ Given $F_{X}(x)=\int_{-\infty}^{x} f_{x}(t) d t, f_{x}$ is called the pdf. CDF Transformation Technique given X and some transformation of X , say $\mathrm{Y}=\mathrm{g}(\mathrm{X})$, we can often obtain the CDF of Y from the CDF of X, and then differentiate to get pdf of Y. CDF Tech. for One-to-one Correspondences $Y=g(X) \Rightarrow f_{Y}(y)=$ $f_{X}\left(g^{-1}(y)\right)\left|\frac{d x}{d y}\right|$, for $y \in S_{y}$ mean $\mu=E(X)$, variance $\sigma^{2}=$ $E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-E[X]^{2}$. standard deviation $=\sqrt{\sigma^{2}}=\sigma$. nth raw moment $E\left(X^{n}\right)$ central moment moment around the mean (to better describe shape of distribution). First moment $=$ mean, second central moment $=$ variance, third central scaled moment $=$ skewness, fourth central scaled moment $=$ kurtosis. moment generating function $/ \mathbf{m g} \quad M(t)=E\left(e^{t X}\right)$ (defined over $-h<t<h$, assuming that $E\left(e^{t X}\right)$ exists for $\left.-h<t<h\right)$. $M_{X}(t)=E\left(e^{t X}\right)=1+t E(X)+\frac{t^{2} E\left(X^{2}\right)}{2!}+\frac{t^{3} E\left(X^{3}\right)}{3!}+\ldots$, therefore to obtain the i'th raw moment we must merely differentiate i times $d t$ and set $t=0$. Inequalities: Theorem 1.10.1: given $X, m \in \mathbb{N}, \mathrm{k} \in \mathbb{N} \wedge \mathrm{k}<\mathrm{m}$, If $E\left[X^{m}\right]$ exists, then $E\left[X^{k}\right]$ exists. Markov's Inequality: Let $u(X)$ be a nonnegative function. If $E[u(X)]$ exists, then for every $c>0, P[u(X) \geq c] \leq \frac{E[u(X)]}{c}$. Chebyshev's Inequality: Assume σ^{2} exists. Then, for every $k>0, P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}$. Convex concave-up (like $y=x^{2}$), strictly convex excludes function like $y=x$ Jensen's Inequality: ϕ convex on open interval I, X 's support is contained in $I, E[X]$ exists $\Rightarrow \phi[E(X)] \leq E[\phi(X)] \quad$ three techniques - change-of-variable, cdf, mgf transformation. Theorem 2.3.1 Let (X_{1}, X_{2}) be a random vector with finite σ^{2} for X_{2}. Then (a) $E\left[E\left(X_{2} \mid X_{1}\right)\right]=E\left(X_{2}\right)$, and $(\mathrm{b}) \operatorname{Var}\left[E\left(X_{2} \mid X_{1}\right)\right] \leq \operatorname{Var}\left(X_{2}\right)$.
Covariance $\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{1}\right)\left(Y-\mu_{2}\right)\right]=E(X Y)-\mu_{1} \mu_{2}$.
Correlation Coeff. $\rho=\frac{\operatorname{cov}(X, Y)}{\sigma_{1} \sigma_{2}} \quad E(X Y)=\mu_{1} \mu_{2}+\operatorname{cov}(X, Y)$. $-1 \leq \rho \leq 1$
X_{1}, X_{2} independent $\Leftrightarrow f(x 1, x 2)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \Leftrightarrow$ $f(x 1, x 2)=g\left(x_{1}\right) h\left(x_{2}\right)$ (where h, g are nonnegative functions) $\Leftrightarrow F\left(x_{1}, x_{2}\right)=F_{1}\left(x_{1}\right) F_{2}\left(x_{2}\right) \forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Independence \Rightarrow $E\left[u\left(X_{1}\right) v\left(X_{2}\right)\right]=E\left[u\left(X_{1}\right)\right] E\left[v\left(X_{2}\right)\right]$. Variance-covariance matrix.
Linear Combinations of R.V.: Let $T=\sum_{i=1}^{n} a_{i} X_{i}$. Thm 2.8.1 $E\left[\left|X_{i}\right|\right]<\infty \Longrightarrow E(T)=\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)$.Thm 2.8.2 Let $W=\sum_{i=1}^{m} b_{i} Y_{i} . \quad E\left[\left|X_{i}^{2}\right|\right]<\infty, E\left[\left|Y_{i}^{2}\right|\right]<$ $\infty \forall i \Longrightarrow \operatorname{Cov}(T, W)=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)$. \quad Cor 2.8.1 Provided $E\left[X_{i}^{2}\right]<\infty$, fori $=1, \ldots, n, \operatorname{Var}(T)=$ $\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)$. Cor 2.8.2 X_{1}, \ldots, X_{n} iid, with finite $\sigma^{2} \Longrightarrow \operatorname{Var}(T)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right) . \quad \bar{X}=$ $n^{-1} \sum_{i=1}^{n} X_{i} \Rightarrow E(\bar{X})=\mu$ and $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}$. Sample Variance $S^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \Rightarrow E\left(S^{2}\right)=\sigma^{2}$.
Cauchy-Schwartz Inequality If X, Y have finite variances $E|X Y| \leq \sqrt{\left(E\left(X^{2}\right) E\left(Y^{2}\right)\right)}$
Simple Linear Regression $y=u_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right)$. Conditional Normal variance $=\sigma_{2}^{2}\left(1-\rho^{2}\right)$ random sample, point estimator, estimate Let $T=T\left(X_{1}, \ldots, X_{n}\right)$ be a statistic. T is an unbiased estimator of θ if $E(T)=\theta$. likelihood function $L(\theta)=L\left(\theta ; x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \quad$ mle $\hat{\theta}=$ $\operatorname{Argmax} L(\theta)$. Confidence Interval Given random sample, $0<$ $\alpha<1$, two statistics L and U . We say that the interval (L, U) is a $(1-\alpha) 100 \%$ confidence interval for θ if $1-\alpha=P_{\theta}[\theta \in(L, U)]$. confidence coefficient. pth quantile of X is $\xi_{p}=F^{-1}(p)$. order statistic With $X_{1}, X_{2}, \ldots, X_{n}$ as random sample, $Y_{1}<Y_{2}<$ $\ldots<Y_{n}$ are the corresponding order statistics. sample quantile Y_{k}, where k is greatest integer $\leq[p(n+1)]$. Distribution free c.i. for ξ_{p} Consider order stats $Y_{i}<Y_{j}$ and event $Y_{i}<\xi_{p}<Y_{j}$. Then $P\left(Y_{i}<\xi_{p}<Y_{j}\right)=\sum_{w=i}^{j-1}\binom{n}{w} p^{w}(1-p)^{n-w}$.

Critical region (C) a test of H_{0} vs H_{1} is based on a subset C of D. Within C, we reject H_{0}. Type 1 error false rejection of H_{0}, Type 2 false acceptance of H_{0}. size = significance level $\alpha=\max _{\theta \in w_{0}} P_{\theta}\left[\left(X_{1}, \ldots, X_{n}\right) \in C\right]$ Power function we want to maximize $P_{\theta}\left[\left(X_{1}, \ldots, X_{n}\right) \in C\right] \quad \mathbf{p}$-value observed "tail" prob. of a statistic being at least as extreme as the particular observed value when H_{0} is true Bootstrap Convergence in Probability Let X_{n} be a sequence of r.v.s. We say that X_{n} c.i.p. to X if, for all $\epsilon>0, \lim _{n \rightarrow \infty} P\left[\left|X_{n}-X\right| \geq \epsilon\right]=0$ Convergence in Distribution Let $C\left(F_{X}\right)$ denote set of all points where F_{X} is continuous. We say that X_{n} c.i.d. to X if $\lim _{n \rightarrow \infty} F X_{n}(x)=F_{X}(x)$, for all $x \in C\left(F_{X}\right)$. (X can be called asymptotic dist or limiting dist). Central Limit Theorem X_{1}, \ldots, X_{n} from dist with μ and positive σ^{2}. Then $Y_{n}=$ $\left(\sum_{i=1}^{n} X_{i}-n \mu\right) / \sqrt{n} \sigma=\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma$ converges in distribution to $N(0,1)$. Regularity Conditions (R0) pdfs distinct, (R1) pdfs have common support for all θ, (R2) $\theta_{0} \in \Omega$, (R3) $f(x ; \theta)$ is twice differentiable fn of θ, (R4) $\frac{d}{d \theta^{2}} \int(x ; \theta)$ exists Fisher Info $I(\theta)=$ $E\left[\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right)^{2}\right]=\operatorname{Var}\left(\frac{\partial \log f(X ; \theta)}{\partial \theta}\right) \quad$ Score fn $\frac{\partial \log f(x ; \theta)}{\partial \theta}($ mle $\hat{\theta}$ solves score $=0) . E($ score $)=0, \sum_{i=1}^{n} \frac{\partial \log f\left(X_{i} ; \theta\right)}{\partial \theta}=\frac{\partial \log L(\theta, \mathbf{X})}{\partial \theta}$. Variance of prev fn is $n I(\theta)$ Rao-Cramer Lower Bound X_{1}, \ldots, X_{n} iid with pdf $f(x ; \theta)$ for $\theta \in \Omega$. Assume (R0)-(R4) hold. Let $Y=u\left(X_{1}, \ldots, X_{n}\right)$ be a statistic with $E(Y)=k(\theta)$. Then $\operatorname{Var}(Y) \geq \frac{[k /(\theta)]^{2}}{n I(\theta)}$. (Corollary) if $k(\theta)=\theta$, then we have $\operatorname{Var}(Y) \geq \frac{1}{n I(\theta)}$. Efficient estimator unbiased estimator Y which obtains Rao-Cramer lower bound. Efficiency $\frac{\text { rao-cramer bound }}{\text { actual variance }}$ Likelihood-Ratio Test $\Lambda=\frac{L\left(\theta_{0}\right)}{L(\hat{\theta})} \Lambda \leq 1$, but if H_{0} is true, Λ should be close to 1 . For a signficance level α, we have the intuitive test "Reject H_{0} in favor of H_{1} if $\Lambda \leq c$. MVUE $Y=$ $u\left(X_{1}, \ldots, X_{n}\right)$ is MVUE of θ if $E(Y)=\theta$ and $\operatorname{Var}(Y) \leq \operatorname{Var}($ any other unbiased estimator of θ). decision rule $\delta(y)$ estimator from observed value of Y to point estimate of θ. A numerically determined point estimate of a parameter θ is a decision. Loss $\operatorname{Fn} \mathcal{L}$: reflects diff between true value θ and point estimate $\delta(y)$. with each pair $[\theta, \delta(y)], \theta \in \Omega$, we associate a nonnegative $\mathcal{L}[\theta, \delta(y)]$. Expected val of Loss Fn is called Risk Fn Minimax Criterion Minimize the maximum of the risk function. min mse estimator minimizes $E\left\{[\theta-\delta(Y)]^{2}\right\} \quad Y_{1}=u_{1}\left(X_{1}, \ldots, X_{n}\right)$ is a sufficient statistic IFF $\frac{f\left(x_{1} ; \theta\right) \cdots f\left(x_{n} ; \theta\right)}{f_{Y_{1}}\left[u_{1}\left(x_{1}, \ldots, x_{n} ; ; \theta\right]\right.}=H\left(x_{1}, \ldots, x_{n}\right)$, where H does not depend on $\theta \in \Omega$ (partitions the sample space such that the conditional sample vec given Y_{1} does not depend on θ). Neyman Factorization Y_{1} is a sufficient statistic IFF \exists two nonnegative fns k_{1}, k_{2} s.t. $f\left(x_{1} ; \theta\right) \cdots f\left(x_{n} ; \theta\right)=$ $k_{1}\left[u_{1}\left(x_{1}, \ldots, x_{n}\right) ; \theta\right] k_{2}\left(x_{1}, \ldots, x_{n}\right)$, where k_{2} does not depend on θ. Rao-Blackwell Let Y_{1} suff statistic, $Y_{2}=u_{2}\left(X_{1}, \ldots, X_{n}\right)$, not a fn of Y_{1} alone, be an unbiased estimator of θ. Then $E\left(Y_{2} \mid y_{1}\right)=\varphi\left(y_{1}\right)$ defines a statistic $\varphi\left(Y_{1}\right) . \varphi$ is a fn of the suff stat for θ; it is an unbiased estimator of θ; and its variance $\leq \operatorname{Var}\left(Y_{2}\right)$. 7.3.2 If Y_{1} suff statistic for θ exists and if $\hat{\theta}$ also exists uniquely, then $\hat{\theta}$ is a fn of Y_{1}. Complete Family Let r.v. Z have pdf/pmf $\in\{h(z ; \theta): \theta \in \Omega\}$. If $E[u(Z)]=0$, for every $\theta \in \Omega$, requires that $u(z)$ be zero except on a set of points that has prob. 0 f.e. h, then the fam. above is called a complete family of $\mathrm{pdfs} / \mathrm{pmfs}$. 7.4.1 Given Y_{1} suff., $f_{Y_{1}}$ complete. If there is a fn of Y_{1} that is an unbiased estimator of θ, then this fn of Y_{1} is the unique MVUE of θ. (also Y_{1} is a complete sufficient statistic Ancillary Statistic contains no info about parameter
Exponential Class Consider

$$
f(x ; \theta)= \begin{cases}\exp [p(\theta) K(x)+H(x)+q(\theta)] & x \in S \\ 0 & \text { elsewhere }\end{cases}
$$

f is \in regular exponential class if $1 . S$ does not depend on $\theta, 2 . p(\theta)$ is a nontrivial continuous fn of $\theta \in \Omega, 3$. (a) if X is a continuous r.v., then each of $K^{\prime}(x) \not \equiv 0$ and $H(x)$ is a continuous fn of $x \in S$. (b) if X is a discrete r.v., then $K(x)$ is a nontrivial fn of $x \in S$. 7.5.1 exponential random sample. Consider $Y_{1}=\sum_{i=1}^{n} K\left(X_{i}\right)$. Then 1. pdf of Y_{1} has form $R\left(y_{1}\right) \exp \left(p(\theta) y_{1}+n q(\theta)\right] . \quad 2$. $E\left(Y_{1}\right)=-n \frac{q^{\prime}(\theta)}{p^{\prime}(\theta)} 3 . \operatorname{Var}\left(Y_{1}\right)=\frac{n}{p^{\prime}(\theta)^{3}}\left\{p^{\prime \prime}(\theta) q^{\prime}(\theta)-q^{\prime \prime}(\theta) p \prime(\theta)\right\}$. 7.5.2 $f(x ; \theta)$ pdf for exponential class. then given random sample $Y_{1}=\sum_{1}^{n} K\left(X_{i}\right)$ is a suff stat for θ and the fam $\left\{f_{Y_{1}}\left(y_{1} ; \theta\right): a<\delta\right\}$ is complete. That is Y_{1} is a complete suff stat for θ.
Uniform Any continuous or discrete random variable X whose pdf or pmf is constant on the support of X. Binomial "How many successes out n random trials" Negative Binomial "How many trials before n successes" Geometric "How many trials before 1 success. e.g. 'waiting time' between successes'. Multinomial Generalization of the Binomial distribution, where each experiment can have more than two possible outcomes. Hypergeometric distribution arises when sampling from two classes without replacement. Poisson "number of events in a given amount of time while running a poisson process" (analogous to binomial distribution but based on poisson instead of bernoulli). Gamma $\Gamma(\alpha, \beta)$ Waiting time between n occurences in a poisson process. Poisson analogue of Negative Binomial distribution. Exponential Waiting time between a single occurence in a poisson process. Poisson analogue of Geometric distribution. ChiSquare $\chi^{2}(r)$ Gamma distribution with $\alpha=r / 2$, where $r \in \mathbb{N}$, and $\beta=2$. r is "number of degrees of freedom". Sampling from multinomial distributions is related to χ^{2} Beta Various uses. Normal Arises extremely frequently in nature, due to the Central Limit Theorem.

name	note	pdf	μ	σ^{2}	mgf
Discrete					
Bernoulli (p)	$0<p<1$	$p^{x}(1-p)^{1-x}, x=0,1$	p	$p(1-p)$	$\left[(1-p)+p e^{t}\right],-\infty<t<\infty$
Binomial (p)	$0<p<1, n=1,2, \ldots$	$\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1,2, \ldots, n$	$n p$	$n p(1-p)$	$\left[(1-p)+p e^{t}\right]^{n},-\infty<t<\infty$
$\overline{\operatorname{Geometric}(p)}$	$0<p<1$	$p(1-p)^{x}, x=0,1,2, \ldots$	$\frac{1-p}{p}$	$\frac{1-p}{p^{2}}$	$p\left[1-(1-p) e^{t}\right]^{-1}, t<-\log 1-p$
Hypergeom (N, D, n)	$n=1,2, \ldots, \min \{N, D\}$	$\frac{\binom{N-D}{n-x}\binom{D}{x}}{\binom{N}{n}}, x=0,1, \ldots, n$	$n \frac{D}{N}$	$n \frac{D}{N} \frac{N-D}{N} \frac{N-n}{N-1}$	complicated...
Neg. $\operatorname{Binom}(p, r)$	$0<p<1, r=1,2, \ldots$	$\binom{x+r-1}{r-1} p^{r}(1-p)^{x}, x=0,1,2, \ldots$	$\frac{p r}{r(1-p)}$	$\frac{1-p}{p^{2}}$	$\begin{aligned} & p^{r}\left[1-(1-p) e^{t}\right]^{-r}, t<-\log (1- \\ & p) \end{aligned}$
Poisson(λ)	$\lambda>0$	$e^{-\lambda \frac{\lambda^{x}}{x!}}$	λ	λ	$\exp \lambda\left(e^{t}-1\right)$
Continuous					
$\operatorname{Beta}(\alpha, \beta)$	$\alpha>0, \beta>0$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}, 0<x<1$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}$	$1+\sum_{i=1}^{\infty}\left(\prod_{j=0}^{k-1} \frac{\alpha+j}{\alpha+\beta+j}\right) \frac{t^{i}}{i!},$ $-\infty<t<\infty$
Cauchy (x)		$\frac{1}{\pi} \frac{1}{x^{2}+1},-\infty<x<\infty$	n/a	n/a	n / a
$\chi^{2}(r)$	$=\Gamma(r / 2,2) . r>0$,	$\frac{1}{\Gamma(r / 2) 2^{r / 2}} x^{(r / 2)-1} e^{-x / 2}, x>0$	r	$2 r$	$(1-2 t)^{-r / 2}, t<1 / 2$
Expontl. (λ)	$=\Gamma(1,1 / \lambda) . \lambda>0$,	$\lambda e^{-\lambda x}, x>0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	$[1-(t / \lambda)]^{-1}, t<\lambda$
$\overline{\Gamma(\alpha, \beta)}$	$\alpha>0, \beta>0$	$\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}, x>0$	$\alpha \beta$	$\alpha \beta^{2}$	$(1-\beta t)^{-\alpha}, t<1 / \beta$
Laplace(θ)	$-\infty<\theta<\infty$	$\frac{1}{2} e^{-\|x-\theta\|},-\infty<x<\infty$	θ	2	$e^{t \theta} \frac{1}{1-t^{2}},-1<t<1$
Logistic (θ)	$-\infty<\theta<\infty$	$\frac{\exp \{-(x-\theta)\}}{(1+\exp \{-(x-\theta)\})^{2}},-\infty<x<\infty$	θ	$\frac{\pi^{2}}{3}$	$e^{t \theta} \Gamma(1-t) \Gamma(1+t),-1<t<1$
$N\left(\mu, \sigma^{2}\right)$	$-\infty<\mu<\infty, \sigma>0$	$\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right),-\infty<x<\infty$	μ	σ^{2}	$\exp \left(\mu t+(1 / 2) \sigma^{2} t^{2}\right),-\infty<t<\infty$
$\overline{t(r)}$	$r>0$	$\frac{\Gamma(r+1) / 2]}{\sqrt{\pi r \Gamma(r / w)} \frac{1}{\left(1+x^{2} / r\right)^{(r+1) / 2}},-\infty<x<}$ ∞	$0 \text { if } r>1$	$\frac{r}{r-2}$ if $r>2$	n / a
$\underline{\operatorname{Unif}(a, b)}$	$-\infty<a<b<\infty$	$\frac{1}{b-a}, a<x<b$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	$\frac{e^{b t}-e^{a t}}{(b-a)^{t},-\infty<t<\infty}$

