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cdf FX(x) = PX((−∞, x]) = P (c ∈ C : X(x) ≤ x) Given
FX(x) =

∫ x
−∞ fx(t) dt, fx is called the pdf. CDF Trans-

formation Technique given X and some transformation of
X, say Y=g(X), we can often obtain the CDF of Y from the
CDF of X, and then differentiate to get pdf of Y. CDF Tech.
for One-to-one Correspondences Y = g(X) ⇒ fY (y) =

fX(g−1(y))
∣∣∣dxdy ∣∣∣ , for y ∈ Sy mean µ = E(X), variance σ2 =

E[(X−µ)2] = E[X2]−E[X]2. standard deviation =
√
σ2 = σ.

nth raw moment E(Xn) central moment moment around the
mean (to better describe shape of distribution). First moment
= mean, second central moment = variance, third central scaled
moment = skewness, fourth central scaled moment = kurtosis.
moment generating function/mgf M(t) = E(etX) (defined
over −h < t < h, assuming that E(etX) exists for −h < t < h).

MX(t) = E(etX) = 1 + tE(X) + t2E(X2)
2! + t3E(X3)

3! + . . ., there-
fore to obtain the i’th raw moment we must merely differentiate
i times dt and set t = 0. Inequalities: Theorem 1.10.1: given
X,m ∈ IN, k ∈ IN ∧ k < m, If E[Xm] exists, then E[Xk] exists.
Markov’s Inequality: Let u(X) be a nonnegative function. If

E[u(X)] exists, then for every c > 0, P [u(X) ≥ c] ≤ E[u(X)]
c .

Chebyshev’s Inequality: Assume σ2 exists. Then, for every
k > 0, P (|X − µ| ≥ kσ) ≤ 1

k2 . Convex concave-up (like
y = x2), strictly convex excludes function like y = x Jensen’s
Inequality: φ convex on open interval I, X’s support is con-
tained in I, E[X] exists⇒ φ[E(X)] ≤ E[φ(X)] three techniques
– change-of-variable, cdf, mgf transformation. Theorem 2.3.1
Let (X1, X2) be a random vector with finite σ2 for X2. Then (a)
E[E(X2|X1)] = E(X2), and (b) V ar[E(X2|X1)] ≤ V ar(X2).
Covariance cov(X,Y ) = E[(X−µ1)(Y −µ2)] = E(XY )−µ1µ2.

Correlation Coeff. ρ = cov(X,Y )
σ1σ2

E(XY ) = µ1µ2 + cov(X,Y ).
−1 ≤ ρ ≤ 1
X1, X2 independent ⇔ f(x1, x2) = f1(x1)f2(x2) ⇔
f(x1, x2) = g(x1)h(x2) (where h, g are nonnegative functions)
⇔ F (x1, x2) = F1(x1)F2(x2)∀(x1, x2) ∈ IR2. Independence ⇒
E[u(X1)v(X2)] = E[u(X1)]E[v(X2)]. Variance-covariance ma-
trix.
Linear Combinations of R.V.: Let T =

∑n
i=1 aiXi.

Thm 2.8.1 E[|Xi|] < ∞ =⇒ E(T ) =
∑n
i=1 aiE(Xi).Thm

2.8.2 Let W =
∑m
i=1 biYi. E[|X2

i |] < ∞, E[|Y 2
i |] <

∞ ∀ i =⇒ Cov(T,W ) =
∑n
i=1

∑m
j=1 aibjCov(Xi, Yj). Cor

2.8.1 Provided E[X2
i ] < ∞, fori = 1, . . . , n, V ar(T ) =∑n

i=1 a
2
iV ar(Xi) + 2

∑
i<j Cov(Xi, Xj). Cor 2.8.2 X1, . . . , Xn

iid, with finite σ2 =⇒ V ar(T ) =
∑n
i=1 a

2
iV ar(Xi). X =

n−1
∑n
i=1Xi ⇒ E(X) = µ and Var(X) = σ2

n . Sample Vari-

ance S2 = (n− 1)−1
∑n
i=1(Xi −X)2 ⇒ E(S2) = σ2.

Cauchy-Schwartz Inequality If X,Y have finite variances
E|XY | ≤

√
(E(X2)E(Y 2))

Simple Linear Regression y = uy + ρ
σy
σx

(x − µx). Condi-

tional Normal variance = σ2
2(1 − ρ2) random sample, point

estimator, estimate Let T = T (X1, . . . , Xn) be a statistic. T
is an unbiased estimator of θ if E(T ) = θ. likelihood

function L(θ) = L(θ;x1, x2, . . . , xn) =
∏n
i=1 f(xi; θ) mle θ̂ =

ArgmaxL(θ). Confidence Interval Given random sample, 0 <
α < 1, two statistics L and U. We say that the interval (L,U) is
a (1− α)100% confidence interval for θ if 1− α = Pθ[θ ∈ (L,U)].
confidence coefficient. pth quantile of X is ξp = F−1(p). or-
der statistic With X1, X2, . . . , Xn as random sample, Y1 < Y2 <
. . . < Yn are the corresponding order statistics. sample quan-
tile Yk, where k is greatest integer ≤ [p(n + 1)]. Distribu-
tion free c.i. for ξp Consider order stats Yi < Yj and event

Yi < ξp < Yj . Then P (Yi < ξp < Yj) =
∑j−1
w=i

(
n
w

)
pw(1 − p)n−w.

Critical region (C) a test of H0 vs H1 is based on a subset
C of D. Within C, we reject H0. Type 1 error false rejec-
tion of H0, Type 2 false acceptance of H0. size = significance
level α = maxθ∈w0 Pθ[(X1, . . . , Xn) ∈ C] Power function we
want to maximize Pθ[(X1, . . . , Xn) ∈ C] p-value observed “tail”
prob. of a statistic being at least as extreme as the particular ob-
served value when H0 is true Bootstrap Convergence in
Probability Let Xn be a sequence of r.v.s. We say that Xn

c.i.p. to X if, for all ε > 0, limn→∞ P [|Xn − X| ≥ ε] = 0
Convergence in Distribution Let C(FX) denote set of all
points where FX is continuous. We say that Xn c.i.d. to X
if limn→∞ FXn(x) = FX(x), for all x ∈ C(FX). (X can be
called asymptotic dist or limiting dist). Central Limit The-
orem X1, . . . , Xn from dist with µ and positive σ2. Then Yn =
(
∑n
i=1Xi−nµ)/

√
nσ =

√
n(Xn−µ)/σ converges in distribution to

N(0, 1). Regularity Conditions (R0) pdfs distinct, (R1) pdfs
have common support for all θ, (R2) θ0 ∈ Ω, (R3) f(x; θ) is twice
differentiable fn of θ, (R4) d

dθ2

∫
(x; θ) exists Fisher Info I(θ) =

E

[(
∂ log f(X;θ)

∂θ

)2
]

=Var
(
∂ log f(X;θ)

∂θ

)
Score fn ∂ log f(x;θ)

∂θ (mle

θ̂ solves score=0). E(score)=0,
∑n
i=1

∂ log f(Xi;θ)
∂θ = ∂ logL(θ,X)

∂θ .
Variance of prev fn is nI(θ) Rao-Cramer Lower Bound
X1, . . . , Xn iid with pdf f(x; θ) for θ ∈ Ω. Assume (R0)-(R4)
hold. Let Y = u(X1, . . . , Xn) be a statistic with E(Y ) = k(θ).

Then Var(Y ) ≥ [k′(θ)]2
nI(θ) . (Corollary) if k(θ) = θ, then we have

Var(Y ) ≥ 1
nI(θ) . Efficient estimator unbiased estimator Y which

obtains Rao-Cramer lower bound. Efficiency rao−cramer bound
actual variance

Likelihood-Ratio Test Λ = L(θ0)

L(θ̂)
Λ ≤ 1, but if H0 is true,

Λ should be close to 1. For a signficance level α, we have the
intuitive test “Reject H0 in favor of H1 if Λ ≤ c. MVUE Y =
u(X1, . . . , Xn) is MVUE of θ if E(Y ) = θ and Var(Y ) ≤Var(any
other unbiased estimator of θ). decision rule δ(y) estimator
from observed value of Y to point estimate of θ. A numeri-
cally determined point estimate of a parameter θ is a decision.
Loss Fn L: reflects diff between true value θ and point estimate
δ(y). with each pair [θ, δ(y)], θ ∈ Ω, we associate a nonnegative
L[θ, δ(y)]. Expected val of Loss Fn is called Risk Fn Mini-
max Criterion Minimize the maximum of the risk function. min
mse estimator minimizes E{[θ− δ(Y )]2} Y1 = u1(X1, . . . , Xn)

is a sufficient statistic IFF f(x1;θ)···f(xn;θ)
fY1 [u1(x1,...,xn);θ] = H(x1, . . . , xn),

where H does not depend on θ ∈ Ω (partitions the sample
space such that the conditional sample vec given Y1 does not
depend on θ). Neyman Factorization Y1 is a sufficient statis-
tic IFF ∃ two nonnegative fns k1, k2 s.t. f(x1; θ) · · · f(xn; θ) =
k1[u1(x1, . . . , xn); θ]k2(x1, . . . , xn), where k2 does not depend on
θ. Rao-Blackwell Let Y1 suff statistic, Y2 = u2(X1, . . . , Xn),
not a fn of Y1 alone, be an unbiased estimator of θ. Then
E(Y2|y1) = ϕ(y1) defines a statistic ϕ(Y1). ϕ is a fn of the suff stat
for θ; it is an unbiased estimator of θ; and its variance ≤ V ar(Y2).

7.3.2 If Y1 suff statistic for θ exists and if θ̂ also exists uniquely,
then θ̂ is a fn of Y1. Complete Family Let r.v. Z have pdf/pmf
∈ {h(z; θ) : θ ∈ Ω}. If E[u(Z)] = 0, for every θ ∈ Ω, requires that
u(z) be zero except on a set of points that has prob. 0 f.e. h,
then the fam. above is called a complete family of pdfs/pmfs.
7.4.1 Given Y1 suff., fY1 complete. If there is a fn of Y1 that is an
unbiased estimator of θ, then this fn of Y1 is the unique MVUE
of θ. (also Y1 is a complete sufficient statistic Ancillary
Statistic contains no info about parameter
Exponential Class Consider

f(x; θ) =
{
exp[p(θ)K(x) +H(x) + q(θ)] x ∈ S
0 elsewhere



f is ∈ regular exponential class if 1. S does not depend on θ, 2. p(θ)
is a nontrivial continuous fn of θ ∈ Ω, 3. (a) if X is a continuous
r.v., then each of K ′(x) 6≡ 0 and H(x) is a continuous fn of x ∈ S.
(b) if X is a discrete r.v., then K(x) is a nontrivial fn of x ∈ S.
7.5.1 exponential random sample. Consider Y1 =

∑n
i=1K(Xi).

Then 1. pdf of Y1 has form R(y1)exp(p(θ)y1 + nq(θ)]. 2.

E(Y1) = −n q′(θ)p′(θ) 3. V ar(Y1) = n
p′(θ)3 {p′′(θ)q′(θ)− q′′(θ)p′(θ)}.

7.5.2 f(x; θ) pdf for exponential class. then given random sample
Y1 =

∑n
1 K(Xi) is a suff stat for θ and the fam {fY1

(y1; θ) : a < δ}
is complete. That is Y1 is a complete suff stat for θ.
Uniform Any continuous or discrete random variable X whose
pdf or pmf is constant on the support of X. Binomial “How
many successes out n random trials” Negative Binomial “How
many trials before n successes” Geometric “How many trials
before 1 success. e.g. ‘waiting time’ between successes”. Multi-
nomial Generalization of the Binomial distribution, where each
experiment can have more than two possible outcomes. Hyper-
geometric distribution arises when sampling from two classes
without replacement. Poisson “number of events in a given
amount of time while running a poisson process” (analogous to
binomial distribution but based on poisson instead of bernoulli).
Gamma Γ(α, β) Waiting time between n occurences in a pois-
son process. Poisson analogue of Negative Binomial distribution.
Exponential Waiting time between a single occurence in a pois-
son process. Poisson analogue of Geometric distribution. Chi-
Square χ2(r) Gamma distribution with α = r/2, where r ∈ IN,
and β = 2. r is “number of degrees of freedom”. Sampling from
multinomial distributions is related to χ2 Beta Various uses.
Normal Arises extremely frequently in nature, due to the Cen-
tral Limit Theorem.

Common Terms Prior probabilities, posterior probabilities,
space/range of r.v. X, support of r.v. X., discrete r.v., con-
tinuous r.v.,
Symbols

Name Note
C sample space
Cc Complement “Complement of C”
D sample space space{(X1, . . . , Xn)}
E(X) expectation expectation of X
M(X) mgf moment generating function E(etX).
P (X) pdf probability density function of X
S support S often used to denote support of r.v.
S2 sample variance
σ2 population variance
X,Y r.v. common letters to denote random

variables.

µ mean is same as expectation
θ0 true value true value of parameter θ0

ξp 100pth distribution percentile

Miscellaneous
Geometric series: You can derive these by setting up a formula
like c0 +c1 +c2 + . . . = S, multiply both sides by c, subtract equa-

tions and solve for S.
∑n
i=0 c

i = cn+1−1
c−1 , c 6= 1,

∑∞
i=0 c

i =
1

1−c ,
∑∞
i=1 c

i = c
1−c , |c| < 1.

Gamma function Γ(n) = (n−1)!
∫
xex dx do it by parts, u =

ex, v = x. binom. coeff. (a+b)n =
∑n
k=0

(
n
k

)
akbn−k. condit.

prob. P (C2|C1) = P (C1∩C2)
P (C1) . P (C1 ∩ C2) = P (C1)P (C2|C1)

bayes P (A|B) = P (B|A)P (A)
P (B) X of N(θ, σ2) ∝ N(θ, σ2/n)

name note pdf µ σ2 mgf

Discrete

Bernoulli(p) 0 < p < 1 px(1− p)1−x, x = 0, 1 p p(1− p) [(1− p) + pet], −∞<t<∞

Binomial(p) 0 < p < 1, n = 1, 2, . . .
(
n
x

)
px(1−p)n−x, x = 0, 1, 2, . . . , n np np(1− p) [(1− p) + pet]n, −∞<t<∞

Geometric(p) 0 < p < 1 p(1− p)x, x = 0, 1, 2, . . . 1−p
p

1−p
p2 p[1−(1−p)et]−1, t < − log 1− p

Hypergeom
(N,D, n)

n = 1, 2, . . . ,min{N,D} (N−D
n−x )(Dx)

(Nn)
, x = 0, 1, . . . , n nDN nDN

N−D
N

N−n
N−1 complicated . . .

Neg.
Binom(p, r)

0 < p < 1, r = 1, 2, . . .
(
x+r−1
r−1

)
pr(1− p)x, x = 0, 1, 2, . . . pr

r(1−p)
1−p
p2 pr[1−(1−p)et]−r, t < − log(1−

p)

Poisson(λ) λ > 0 e−λ λ
x

x! λ λ expλ(et − 1)

Continuous

Beta(α, β) α > 0, β > 0 Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1, 0<x<1
α

α+β
αβ

(α+β+1)(α+β)2 1 +
∑∞
i=1

(∏k−1
j=0

α+j
α+β+j

)
ti

i! ,

−∞<t<∞

Cauchy(x) 1
π

1
x2+1 , −∞<x<∞ n/a n/a n/a

χ2(r) = Γ(r/2, 2). r > 0, 1
Γ(r/2)2r/2

x(r/2)−1e−x/2, x > 0 r 2r (1− 2t)−r/2, t < 1/2

Expontl.(λ) = Γ(1, 1/λ). λ > 0, λe−λx, x > 0 1
λ

1
λ2 [1− (t/λ)]−1, t < λ

Γ(α, β) α > 0, β > 0 1
Γ(α)βαx

α−1e−x/β , x > 0 αβ αβ2 (1− βt)−α, t < 1/β

Laplace(θ) −∞ < θ <∞ 1
2e
−|x−θ|, −∞<x<∞ θ 2 etθ 1

1−t2 , −1<t<1

Logistic(θ) −∞ < θ <∞ exp{−(x−θ)}
(1+exp{−(x−θ)})2 , −∞<x<∞ θ π2

3 etθΓ(1− t)Γ(1 + t), −1<t<1

N(µ, σ2) −∞ < µ <∞, σ > 0 1√
2πσ

exp
(
− 1

2
(x−µ)2

σ2

)
, −∞<x<∞ µ σ2 exp(µt+ (1/2)σ2t2), −∞<t<∞

t(r) r > 0 Γ[(r+1)/2]√
πrΓ(r/w)

1
(1+x2/r)(r+1)/2 , −∞<x<

∞

0 if r>1
r
r−2 if r>2 n/a

Unif(a, b) −∞<a<b<∞ 1
b−a , a<x<b

a+b
2

(b−a)2

12
ebt−eat

(b−a)t, −∞<t<∞


