Statistics Reference Card v0.5, Currell Berry. Based on “Intro to Mathematical Statistics” by Hogg,McKean,Craig, chapters 1-7.

cdf Fx(x) = Px((—oo,z]) = PlceC:X(z)<z) Given

= [*_fu(t) dt, f, is called the pdf. CDF Trans-
formation Technique given X and some transformation of
X, say Y=g(X), we can often obtain the CDF of Y from the
CDF of X, and then differentiate to get pdf of Y. CDF Tech.
for One-to-one Correspondences ¥ = ¢g(X) = fy(y) =

Ifx(g7 () % d— , for y € S, mean y = E(X), variance 0% =
E[(X—p)? = E[X2} E[X]?. standard deviation = V02 = o.

nth raw moment E(X™) central moment moment around the
mean (to better describe shape of distribution). First moment
= mean, second central moment = variance, third central scaled
moment = skewness, fourth central scaled moment = kurtosis.
moment generating function/mgf M(t) = E(e!X) (defined
over —h < t < h, assuming that E(e!X) exists for —h < t < h).
Mx () = E(etX) = 1+ tB(X) + LE&D 4 CEXD) 4 there-
fore to obtain the i’th raw moment we must merely differentiate
i times dt and set ¢t = 0. Inequalities: Theorem 1.10.1: given
Xm € Nk € NAk < m, If E[X™] exists, then E[X*] exists.
Markov’s Inequality: Let u(X) be a nonnegative function. If
Elu(X)] exists, then for every ¢ > 0, Plu(X) > ] < M
Chebyshev’s Inequality: Assume o2 exists. Then, for every
k > 0, P(|X — pu| > ko) < {5. Convex concave-up (like
y = x?2), strictly convex excludes function like y = 2 Jensen’s
Inequality: ¢ convex on open interval I, X’s support is con-
tained in I, E[X] exists = ¢[E(X)] < E[¢p(X)] three techniques
— change-of-variable, cdf, mgf transformation. Theorem 2.3.1
Let (X1, X2) be a random vector with finite o2 for X5. Then (a)
E[E(X2|X1)] = E(X2), and (b) Var[E(X2|X1)] < Var(Xa2).

Covariance cov(X,Y) = E[(X — 1) (Y — pu2)] = BE(XY) — p1 pio.
cvXY)  B(XY) = pyps + cov(X,Y).
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Correlation Coeff. p =
-1<p<1

X1,X5 independent < f(zl,22) = fi(x1)fa(ze) <&
f(xl,22) = g(x1)h(z2) (where h,g are nonnegative functions)
& F(x1,22) = Fi(z1)Fa(22)V(21,22) € R%  Independence =
Elu(X1)v(X3)] = Elu(X1)]F[v(X2)]. Variance-covariance ma-
trix.

Linear Combinations of R.V.: Let T = Y a;X;.
Thm 2.8.1 E[|X;|] < oo = E(T) = Y . ,a,E(X;). Thm
282 Let W = Y7 bY,. E[X?] < oo,E[Y?] <

oo Vi = Cou(T,W) = 31, >0, aibjCov(X;,Y;). Cor
2.8.1 Provided E[X?] < oo, fori = 1,...,n, Var(T) =
S aiVar(X;) +23, ., Cov(X;, X;). Cor 2.8.2 Xy,..., X,
iid, with finite 0> = Var(T) = >, a?Var(X;). X =

1
n Y " X, = E(X) = p and Var(X) = ”—.
ance S? =(n—1)"'Y" (X; - X)? = (S )=
Cauchy-Schwartz Inequahty If X have finite variances
EIXY| < /(E(X?)E(Y?))

Simple Linear Regression y = u, + p

Sample Vari-
=F
Y
2(x — pg). Condi-

random sample, point
X,) be a statistic. T

tional Normal variance = o3(1 — p?)

estimator, estimate Let T = T(X;,...,
is an unbiased estimator of 6 if E(T) = 6. likelihood
function L(0) = L(0;z1,22,...,2,) = [[1n) f(z;;60) mle 6 =
ArgmaxL(¢). Confidence Interval Given random sample, 0 <
a < 1, two statistics L and U. We say that the interval (L,U) is
a (1 — «)100% confidence interval for 6 if 1 —a = Py[f € (L,U)].
confidence coefficient. pth quantile of X is £, = F~1(p). or-
der statistic With X1, X, ..., X,, as random sample, Y7 < Y5 <
... <Y, are the corresponding order statistics. sample quan-
tile Yy, where k is greatest integer < [p(n + 1)]. Distribu-
tion free c.i. for &, Consider order stats ¥; < Y; and event
Y; <& <Yj. Then P(Y; < §, <Yj) =37y (1 =p)n T

;1i (Z)p

Critical region (C) a test of Hy vs H; is based on a subset
C of D. Within C, we reject Hy. Type 1 error false rejec-
tion of Hy, Type 2 false acceptance of Hy. size = significance
level a = maxgew, Po[(X1,...,X,) € C] Power function we
want to maximize Py[(X1,...,X,) € C] p-value observed “tail”
prob. of a statistic being at least as extreme as the particular ob-
served value when Hj is true Bootstrap Convergence in
Probability Let X, be a sequence of r.v.s. We say that X,
cip. to X if, for all € > 0, lim,0 P[| X, — X| > ¢ = 0
Convergence in Distribution Let C(Fx) denote set of all
points where Fx is continuous. We say that X, c.i.d. to X
if imy,—00 FX,(2) = Fx(z), for all © € C(Fx). (X can be
called asymptotic dist or limiting dist).  Central Limit The-
orem X,...,X, from dist with x and positive 02. Then Y,, =
(X, Xi—np)/v/no = \/n(X,—p)/o converges in distribution to
N(0,1). Regularity Conditions (R0) pdfs distinct, (R1) pdfs
have common support for all 8, (R2) 6y € Q, (R3) f(x;0) is twice
differentiable fn of 6, (R4) 545 [(x;0) exists Fisher Info I(6) =

2
E |:(8logga(X;9)) } :Var(ialoggéxﬁg Score fn 70103;5;(”9) (mle
j _ Olog S(Xus0) _ DlogL(0.X
6 solves score=0). E(score)=0, Y. == ( ) — 9Olg ( ),

Variance of prev fn is nI(#) Rao- Cramer Lower Bound
X1,..., X, iid with pdf f(z;0) for 6 € Q. Assume (R0)-(R4)

hold. Let Y = u(Xy,...,X,) be a statistic with E(Y) = k(6).
2
Then Var(Y) > [Z/I(?g]) . (Corollary) if k() = 6, then we have

Var(Y) > ﬁ@. Efficient estimator unbiased estimator Y which
obtains Rao-Cramer lower bound. Efficiency %

Likelihood-Ratio Test A = % A < 1, but if Hy is true,
A should be close to 1. For a signficance level «, we have the
intuitive test “Reject Hy in favor of Hy if A <¢. MVUEY =
u(Xy,...,X,) is MVUE of 0 if E(Y) = 6 and Var(Y') <Var(any
other unbiased estimator of #). decision rule §(y) estimator
from observed value of Y to point estimate of 6. A numeri-
cally determined point estimate of a parameter 8 is a decision.
Loss Fn L: reflects diff between true value 6 and point estimate

d(y). with each pair [6,0(y)],0 € Q, we associate a nonnegative
L[6,6(y)]. Expected val of Loss Fn is called Risk Fn Mini-
max Criterion Minimize the maximum of the risk function. min
mse estimator minimizes E{[0 —§(Y)]?} Vi = wi(X1,...,Xy)
is a sufficient statistic IFF % = H(z1,...,2n),

where H does not depend on 8 € Q (partitions the sample
space such that the conditional sample vec given Y; does not
depend on #). Neyman Factorization Y; is a sufficient statis-
tic IFF 3 two nonnegative fns ki, ko s.t. f(x1;0)--- f(zn;0) =
ki[ui(x1, ... x0); 0lka (21, . . ., zp), where ko does not depend on
6. Rao-Blackwell Let Y; suff statistic, Yo = ua(X1,...,X,),
not a fn of Y7 alone, be an unbiased estimator of 6. Then
E(Ys|y1) = ¢(y1) defines a statistic ¢(Y7). ¢ is a fn of the suff stat
for 0; it is an unbiased estimator of §; and its variance < Var(Y3).
7.3.2 If V; suff statistic for 6 exists and if § also exists uniquely,
then f is a fn of ;. Complete Family Let r.v. Z have pdf/pmf
€ {h(z;0):0 € Q}. If Eu(Z)] =0, for every 6 € Q, requires that
u(z) be zero except on a set of points that has prob. 0 fe. h,
then the fam. above is called a complete family of pdfs/pmfs.
7.4.1 Given Y7 suff., fy; complete. If there is a fn of Y3 that is an
unbiased estimator of 6, then this fn of Y7 is the unique MVUE
of 6. (also Y7 is a complete sufficient statistic Ancillary
Statistic contains no info about parameter

Exponential Class Consider

Flw:0) = { explp()K(z)+ H(z) +q(0)] z€S
0 elsewhere



fis € regular exponential class if 1. S does not depend on 6, 2. p(6)
is a nontrivial continuous fn of 8 € Q, 3. (a) if X is a continuous
r.v., then each of K’'(z) # 0 and H(x) is a continuous fn of x € S.
(b) if X is a discrete r.v., then K(x) is a nontrivial fn of = € S.
7.5.1 exponential random sample. Consider Y7 = > 1" | K(X;).
Then 1. pdf of Y7 has form R(yi)exp(p(6)yr + nq(9)]. 2.

E(W) = - 3. Var(Yy) = o {pn(0)q/(0) — q(0)p/(6)}.
7.5.2 f(x;0) pdf for exponential class. then given random sample
Y =Y 7 K(X;) is a suff stat for 6 and the fam { fy, (y1;60) : a < &}
is complete. That is Y7 is a complete suff stat for 6.

Uniform Any continuous or discrete random variable X whose
pdf or pmf is constant on the support of X. Binomial “How
many successes out n random trials” Negative Binomial “How
many trials before n successes” Geometric “How many trials
before 1 success. e.g. ‘waiting time’ between successes”. Multi-
nomial Generalization of the Binomial distribution, where each
experiment can have more than two possible outcomes. Hyper-
geometric distribution arises when sampling from two classes
without replacement. Poisson “number of events in a given
amount of time while running a poisson process” (analogous to
binomial distribution but based on poisson instead of bernoulli).
Gamma I'(«@, 3) Waiting time between n occurences in a pois-
son process. Poisson analogue of Negative Binomial distribution.
Exponential Waiting time between a single occurence in a pois-
son process. Poisson analogue of Geometric distribution. Chi-
Square x?(r) Gamma distribution with o = r/2, where r € IN,
and f = 2. r is “number of degrees of freedom”. Sampling from
multinomial distributions is related to x> Beta Various uses.
Normal Arises extremely frequently in nature, due to the Cen-
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Common Terms Prior probabilities, posterior probabilities,
space/range of r.v. X, support of r.v. X., discrete r.v., con-
tinuous r.v.,

Symbols
Name Note
C sample space
Ce Complement “Complement of C”

D sample space space{(X1,...,Xn)}

E(X) expectation expectation of X

M(X) mgf moment generating function E(e!X).

P(X) pdf probability density function of X

S support S often used to denote support of r.v.

52 sample variance

o? population variance

XY rwv. common letters to denote random
variables.

o mean is same as expectation

0o true value  true value of parameter 6,

&p 100pth distribution percentile

Miscellaneous

Geometric series: You can derive these by setting up a formula

like (¥ 4c' +c?+... = S, multiply both sides by ¢, subtract equa-

tions and solve for S. Y1 ¢ = Cn;_lfl, c#1l, Y, =

= Lid=1% ld<i
Gamma function I'(n) = (n—1)! [ xe® dz do it by parts, u =
e’,v=gz. binom. coeff. (a+b)" =37 (})a*b""*. condit.

prob.  P(Cy|Cy) = P05 P(Cy N Cy) = P(C1)P(Cy|Ch)
P(B|A)P(A)

bayes P(A|B) = X of N(0,0?) < N(6,02/n)

tral Limit Theorem. P(B)
name note pdf I o2 mgf
Discrete
Bernoulli(p) 0<p<1 p*(1—p)l=2 2 =0,1 P p(1—p) [(1 —p) + pel], —co<t<oo
Binomial(p) 0<p<l,n=1,2,... Z)px(l—p)"f‘r,x:0,1,2,...,n np np(l —p) [(1 —p) + pet]?, —co<t<oo
Geometric(p) 0<p<1 p(1—p)*,x=0,1,2,... 1[);” 11)_21’ pll—(1—p)et]= 1t < —logl —p
Hypergeom n=1,2,..., min{N, D} %,x =0,1,...,n n% n%%%:’f complicated.. ..
(N,D,n) "
Neg. O<p<l,r=1,2,... (Ifi;l)pr(l—p)m,x:() L,2,... 25 1pgp p"[1—(1—p)e]~" ¢t < —log(1l—
Binom(p, r) D)
Poisson(A) A >0 A A A A expA(ef — 1)
Continuous
Beta(a,3) a>0,8>0 FF(EXO;;E(@) 11— 2)P7L) o<zt P (a+[3+olé)ﬁ(a+ﬁ)2 1+ >, (Hf;é ai‘gij) %,,
—oo<t<oo
Cauchy(x) %ZQ{H, —oco<z <00 n/a n/a n/a
x2(r) =T(r/2,2). r >0, WI(T/Q)_le_I/Q,x >0 r 2r (1—2t)""/2t<1/2
Expontl.(A\) =T(1,1/A). A >0, Ae™M x>0 1 += =@/ HLt<A
I'(a, B) a>0,>0 Wxa_le_m/ﬂ,x>0 af aB? 1-pt)y"*t<1/p
Laplace(6) —00 < 0 < 00 1e71P70 _socacoo 0 2 e Lz, —1<i<a
Logistic(f)  —oo <6 < o0 %, —co<w<oo 6 %2 T (1 —t)I(1+1), —1<t<1
N(u,o?) —0 < < o0,0>0 = eXPp —%(x;f)2>, —co<z<oo  fi o? exp(ut + (1/2)0?t?), —co<t<oo
t(r) >0 \F/%;r(lT)//j]) (1+I2/7})(T+1)/27 —co<z< 0if r>1 L5 if r>2 n/a
o0
Unif(a, b) —oo<a<h<oo -, a<a<b ath (bIS)Q Mﬁ%




