GT Math 2403 T2 Equations Sheet

Chapter 2

- $\frac{dy}{dt} + p(t)y = g(t)$. Integrating Factor $u(t) = e^{\int p(t) dt}$ (1) General FOLDE
- $\frac{dy}{dt} = r(1 \frac{y}{K})y$ where r is growth rate and K is carrying capacity (2) Logistic Growth
- M(x,y)dx + N(x,y)dy = 0 is exact IFF $\frac{\partial M}{\partial u} = \frac{\partial N}{\partial x}$ (3) Criteria for Exact Eqns
- then $\frac{M_y N_x}{N}$ depends only on x (4) Integrating Factor Depends Only on x? switch N_x and M_y to test if integrating factor depends only on y.

Chapter 3: First Order Systems

- (1) FOLS Test for Unique Solution If the coefficient functions of a general linear system are continuous on an open interval I, then there exists a unique solution to the system which exists throughout the interval for any given initial values.
- (2) Wronskian If the Wronskian of two solutions is not zero, they form a fundamental set.
- $y(t) = c_1 e^{\lambda_1 t} \boldsymbol{v_1} + c_2 e^{\lambda_2 t} \boldsymbol{v_2}$ (3) Real and Different Eigenvalues
- (4) Complex Eigenvalues Use Euler's formula to simplify the solution into its real part u(t) and its complex part w(t). The general solution then is $x = c_1 u(t) + c_2 w(t)$
- (5) Repeated Eigenvalues, One Eigenvector Find w satisfying $(A \lambda I)w = v$. An additional solution is then $e^{\lambda t}(w+tv)$

Chapter 4: Second Order LDEs

Find roots of characteristic polynomial. Then use below formulas to complete the solution.

(1) Real and Distinct

- Roots of form $\lambda \pm \mu i$ then real part of solution is $c_1 e^{\lambda t} \cos \mu t + c_2 e^{\lambda t} \sin \mu t$ (2) Complex
- (3) Repeated

(4) Spring Equation

- $my''(t) + \gamma y'(t) + ky(t) = F(t)$
- (5) **Damping** $c = \gamma^2 4km$. If c < 0 then underdamped. If c = 0 then critically damped. If c > 0then overdamped
- (6) Undetermined Coefficients

The particular solution of
$$ay'' + by' + cy = g_i(t)...$$

$$g_i(t) \qquad Y_i(t)$$

$$P_n(t) = a_0 t^n + a_1 t^{n-1} + ... + a_n \qquad t^s (A_0 t^n + A_1 t^{(n-1)} + ... + A_n + A_n) e^{\alpha t}$$

$$P_n(t) e^{\alpha t} \qquad t^s (A_0 t^n + A_1 t^{n-1} + ... + A_n) e^{\alpha t}$$

$$P_n(t) e^{\alpha t} \begin{cases} \sin \beta t \\ \cos \beta t \end{cases} \qquad t^s [(A_0 t^n + A_1 t^{n-1} + ... + A_n) e^{\alpha t} \cos \beta t + (B_0 t^n + A_1 t^{n-1} + ... + B_n) e^{\alpha t} \sin \beta t]$$

- (7) Variation of Parameters 1 Given $[x_1, x_2]$ which form a fundamental set of solutions to x' =P(t)x, then $X = \{x_1, x_2\}$, and a particular solution to y'' + p(t)y' + q(t)y = g(t) is $X(t) \int X^{-1}(t)g(t)dt$
- (8) Variation of Parameters 2 Given solutions y_1 and y_2 to the corresponding homogenous equation, a particular solution to y'' + p(t)y' + q(t)y = g(t) is

$$Y(t) = -y_1(t) \int \frac{y_2(t)g(t)}{W[y_1, y_2](t)} dt + \int \frac{y_1(t)g(t)}{W[y_1, y_2](t)} dt$$

Chapter 5: Laplace Transformations

(1) Definition of Laplace Transform

$$\int_0^\infty e^{-st} f(t) dt$$

Table of Common Laplace Transformations

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	$\frac{1}{s}$	$e^{ct}f(t)$	F(s-c)
t^n	$\frac{n!}{s^{n+1}}$	$t^n f(t)$	$(-1)^n F^{(n)}(s)$
$\sin(at)$	$\frac{a}{s^2 + a^2}$	$\cos at$	$\frac{s}{s^2+a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$	$\cosh at$	$\frac{s}{s^2-a^2}$
$u_c(t)f(t-c)$	$e^{-cs}F(s)$	$\delta(t-c)$	e^{-cs}
$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	f'(t)	sF(s) - f(0)

Chapter 7: Nonlinear Differential Equations and Stability

- (1) Condition for Linear Approximation Given general nonlinear system x' = F(x, y), y' = G(x, y) (A). The system is almost linear in the neighborhood of any isolated critical point (x_0, y_0) whenever the functions F and G have continuous partial derivatives up to order 2.
- (2) Almost Linear Approximation Find the Jacobian matrix of the system. Plug in the x and y values of each critical point for a linear approximation of the system near that critical point.